The use of Ca-/Zn-DTPA for chelation of gadolinium in “Gadolinium Deposition Disease”

By Dr. RC Semelka & Dr. M Ramalho

Gadolinium deposition disease (GDD) has been proposed as the name for a newly described, not yet widely accepted, condition of gadolinium (Gd) toxicity. In this review, we summarize the results from our recently published investigation on the use of Ca-/Zn-DTPA chelation in 25 patients with presumed Gadolinium Deposition Disease (GDD) [1]. We also expand our discussion to include the strengths and weaknesses of our paper, our current thinking on the disease, and more comprehensive possible future treatments for GDD.

GDD FEATURES
The classic symptoms of the newly postulated but not yet confirmed condition of gadolinium deposition disease (GDD) have been described as including: brain fog; head pain; blurred vision and dry eyes; skin and skin substrate burning pain; boring bone and/or joint pain; sharp pins and needles pain (neuralgia); and glove and sock changes of skin discoloration, doughy or thickened skin, and pain [2-5]. The typical symptoms that patients experience include those also described in Nephrogenic Systemic Fibrosis (NSF) but are less severe, in particular, as regards changes of the distal arms/hands and distal legs/feet.

GADOLINIUM DEPOSITION DISEASE (GDD): WHAT’S IN A NAME?
We believe that one advantage of using a name that begins with Gadolinium to describe the condition is that there is no doubt about what the condition refers to. In contrast, for example, Nephrogenic Systemic Fibrosis (NSF), does not really convey a sense of what the disease is about. According to Dorland’s Medical Dictionary, a disease is defined as: “...a definite morbid process that has a characteristic train of symptoms...”, which applies to GDD. It appears that the persistent presence of Gd could be responsible for the long duration and drawn-out nature of the disease. The term “deposition” suggests a more embedded process than “retention” for example; Gd is embedded in skin and bone. Some observers have suggested the term “associated” but we feel that “associated” does not communicate appropriately the sense of Gd remaining in the body. Thus the term “Gd-associated” may be more applicable to transient symptoms, as described by Carlo Quattrocchi’s group [6]. Another alternative term that could be considered for inclusion in a description of the condition is the word “exposure”. However this may better describe an acute hypersensitivity reaction, which gives an aspect of transience and not the concept of Gd remaining in the body.
Some patients have actually wanted to call the condition “poisoning”. However, this usually implies that everyone who receives a similar amount of a causative substance should get similarly sick, which is not the case in GDD.

EPIDEMIOLOGY

Many of the individuals afflicted by GDD are
i) women,
ii) individuals of central to northern European ancestry, and
iii) suffer from an autoimmune disease.

HYPOTHETICAL DISEASE MECHANISM

The original hypothesis behind our study of the effect of using a chelating agent to remove Gd in GDD sufferers was that this by itself would be sufficient to cure patients of their symptoms. The chelating agents we used were the calcium and zinc salts of diethylene triamine penta-acetic acid (DTPA) which is approved by the FDA for intravenous administration in the treatment of patients contaminated by heavy metals of the actinide family. Gadolinium is an element of the lanthanide series, which have similar ionic radii and shares a number of chemical characteristics with actinides.

Our published results [1], our continued clinical experience and worldwide observations suggest however that chelation alone may not be sufficient to cure many patients.

This has led us to theorize that the disease has two components: 1) the presence of Gd in the body, and 2) the host response to that presence.

Intravenous DTPA may be currently the best available chelating agent; however, if the host response is not addressed, many patients will not recover from the disease.

HOST RESPONSE

Our current thinking is that GDD involves many elements of the immune system, including acute humoral response (granulocytes, mast cells, B cells), subacute response (macrophages, T-cells) and chronic response (circulating fibrocytes). Hence it is similar to a combination of acute hypersensitivity reactions and NSF. The similarity to acute hypersensitivity reaction could explain why all GBCAs, regardless of structure, can cause GDD, whereas NSF is primarily associated with less stable linear agents. Managing the host response is part of our ongoing efforts, not reported in the chelation paper [1].

CYTOKINES

Our initial analysis of the variability of the response of patients to GBCA injection, which ranges from no response at all, (which we term Gadolinium storage condition, and covers the vast majority of subjects who have received GBCA), to patients suffering from GDD, was stimulated by an article published on a similarly variable response elaborated by ex vivo peripheral blood monocyte cells (PBMCs) from different individuals to the presence of Candida albicans. The reaction varied also from no response at all to a massive response, as shown by cytokine release [7]. This was also supported by studies performed by the research team of Wermuth and Jimenez [8] who showed a dramatic elevation of various proinflammatory cytokines to the presence of all the GBCAs, with differences observed between the agents. Based on all this, our current opinion is that cytokine release may be central to the disease, and thus key to the underlying mechanisms of the disease.

Our rationale behind the therapeutic treatment of GDD individuals relies on the concept that Gd is the precipitating cause, with Gd deposition reflecting continuous ongoing exposure of Gd, from the continued slow release of Gd (from tissue reservoirs) into the vascular system. Thus if Gd released from GBCAs in vivo was the sole causative factor, then simple chelation should suffice. Therefore, our group investigated the off-label use of Ca-/Zn-DTPA for the treatment of symptomatic patients with presumed GDD.

TREATMENT WITH CA-/ZN-DTPA CHELATION

The best agent currently approved for patient use worldwide is Ca-/Zn-DTPA. In the USA this agent is FDA approved as a “decorporation” agent (similar to a chelator) for a variety of radioactive actinide metals, the best known of which is plutonium. A variety of investigators have looked, somewhat randomly, at a number of chelators, including EDTA and desferoxamine. What is often missing in these studies is that the fundamental criterion for the appropriateness of a chelator agent, namely that it should have high thermodynamic stability (also known as stability constant) with the element it is to chelate (Gd), and also kinetic stability. Determinations of the thermodynamic and kinetic stability were established for GBCAs at their initial inception. Thus it seems obvious and appropriate to use these same data for assessing relchelating agents that could be used to capture the Gd in vivo. Table 1 shows the stability constants and

<table>
<thead>
<tr>
<th>Gd Chelate</th>
<th>Structure Type</th>
<th>Thermodynamic Stability</th>
<th>Kinetic Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>Macroyclic ionic</td>
<td>Log (K_{elem})</td>
<td>T1/2 at pH 1.0 at 25°C</td>
</tr>
<tr>
<td>Dotarem® (gadoterate meglumine)</td>
<td>25.6</td>
<td>19.3</td>
<td>338 hr</td>
</tr>
<tr>
<td>Gadavist® (gadobutrol)</td>
<td>21.8</td>
<td>14.7</td>
<td>43 hr</td>
</tr>
<tr>
<td>ProHance® (gadoterodol)</td>
<td>23.8</td>
<td>17.1</td>
<td>3.9 hr</td>
</tr>
<tr>
<td>MultiHance® (gadobenate dimeglumine)</td>
<td>Linear ionic</td>
<td>22.6</td>
<td>18.4</td>
</tr>
<tr>
<td>Magnevist® (gadopentetate dimeglumine)</td>
<td>Linear ionic</td>
<td>22.1</td>
<td>17.7</td>
</tr>
<tr>
<td>Omniscan™ (gadodiamide)</td>
<td>Linear non-ionic</td>
<td>16.9</td>
<td>14.9</td>
</tr>
<tr>
<td>OptMARK™ (gadoversetamide)</td>
<td>Linear non-ionic</td>
<td>16.6</td>
<td>15.0</td>
</tr>
</tbody>
</table>
of the bonds between the macrocyclic agents and Gd; that
tions. Nevertheless we think that the key factor may reflect
participants, so the possibility can’t be excluded that patients
addition, there was no rigorous control of the human study
tion before and after treatment may show different results. In
Ca-DTPA–induced Gd excretion, subtracting the amount of
Gadavist). In their study they distinguished spontaneous and
rodents who had received linear GBCA (e.g. Gadopentetate;
DTPA induced a 10-fold increase of urinary excreted Gd in
in humans, Boyken [11] described Ca-DTPA chelation
magnitudes more tightly than EDTA (around 288,000 greater
constant for Gd than other chelating agents and also for
structural characteristics of the main Gadolinium-based con-
trast agents (GBCAs). Note that DTPA has a higher stability
for Gd than other chelating agents and also for
other heavy metals. For example, DTPA binds Gd several
magnitudes more tightly than EDTA (around 288,000 greater
affinity) [9,10].

These data were behind our decision to use Ca-/Zn-DTPA
to re-chelate Gd in patients with self-described GDD [1].

The basic regimen of the protocol we used was: Ca-DTPA
day 1, Zn-DTPA day 2, in a fashion analogous to the pro-
tocols used for the “decorporation” of radioactive metals.
The process was repeated weekly or monthly, for a total of
three chelation treatment time-points. The results of our
study showed that Ca-Zn-DTPA increased the urine level
of Gd, as measured in 24-hour samples. This increase was
substantially higher for linear agents. Also, the increase was
greater following Ca-DTPA on day 1 than with Zn-DTPA
on day 2. One interesting finding was that even with macro-
cyclic agents, the urine level of Gd was increased, but by less
than half the increase observed for all GBCAs collectively.
Overall, there was a mean increase of Gd in urine of 30 fold
in monthly regimen and by 12 -fold in the weekly regimen
(p < 0.001) [1].

Following our experience of intravenous DTPA chelation
in humans, Boyken et al. [11] described Ca-DTPA chelation
of Gd in a rodent model with three infusions of Ca-DTPA
or saline, once weekly. In their study, they observed that
DTPA induced a 10-fold increase of urinary excreted Gd in
rodents who had received linear GBCA (e.g. Gadopentetate; Magnevist) but not after a macrocyclic agent (Gadobutrol;
Gadavist). In their study they distinguished spontaneous and
Ca-DTPA–induced Gd excretion, subtracting the amount of
Gd determined in the saline-infusion animals from that in
the Ca-DTPA–infused animals and defining the remaining
amount as mobilized Gd. The differences between this study
and our results [1] could be attributed to differences in the
timing of Gd deposition, which could vary from months to
years after the latest GBCA exposure [1] and only seven weeks
in the rat model [11], Thus comparison of spontaneous excre-
tion before and after treatment may show different results.
In addition, there was no rigorous control of the human study
participants, so the possibility can’t be excluded that patients
might have received previous unrecorded linear GBCA injec-
tions. Nevertheless we think that the key factor may reflect
characteristics specific to GDD patients, such as the cleavage
of the bonds between the macrocyclic agents and Gd; that
DTPA is acting as a levering agent of intact chelate out of tis-
ues; or DTPA acting as a carrier molecule of the intact chelate,
et of course possibly a combination of all three effects.

LABORATORY FINDINGS OF SERUM BIOCHEMISTRY

Three-chelation sessions spaced either one week or one
month apart, as carried out in our study, did not give rise to
abnormalities in blood chemistry, in particular in the serum
levels of cations and metals, including zinc, magnesium and
potassium. If sessions are spaced much more closely and at
a higher total number, it is not unreasonable to anticipate
that perturbations in blood levels of cations or metals may
occur. Thus, close surveillance of serum chemistry is indi-
cated if more aggressive chelation is performed.

FLARE UP REACTION

The flare-up (or flare) reaction is the most common adverse
reaction to chelation therapy. In our study, we reported that
this occurred in 44% of the patients [1]. We speculate that this
reflects a host immune response to the remobilization of Gd
in the vascular system, probably primarily through a cytokine
response. So, effective re-chelation in a patient with true GDD
may result in a flare, and our opinion is that development of
flare may be the most specific clinical evidence for the presence
of GDD. Flare, as we initially described it, is an intensification
of already developed symptoms of GDD. In our more recent
clinical experience, we have observed the development of new
symptoms of GDD, or expansion of existing symptoms.

SUMMARY

Our published results using intravenous DTPA to remove
Gd from humans, showed that the approach does increase Gd
elimination from the body. However, it appears that although
patients symptoms improve, they probably require more ses-
tions than we carried out. Also, it seems that the management
of the host response might be necessary in order to achieve
optimal cure for many patients.

REFERENCES:
1. Semelka RC, Ramalho M, Jay M, Hickey L. Hickey. Intravenous Calcium-Zinc-
Diethylene Triamine Penta-Acetic Acid in Patients With Presumed Gadolinium
53: 373-5.
2. Semelka RC, Commander CW, Jay M, et al. Presumed gadolinium toxicity in
subjects with normal renal function: a report of 4 cases. Invest Radiol. 2016;
51: 661.
initial description of a disease that has been around for a while. Magn Res Imaging.
2016;34:1383.
2016;34:1078-1080.
6. Parillo M, Sapienza M, Arpaia F, Magnani F, Mallois CA, D’Alessio R, Quattrochi
CC. A Structured Survey on Adverse Events Occurring Within 24 Hours After
Intravenous Exposure to Gadobamide or Gadodate Meglumine: A Controlled
Prospective Comparison Study. Invest Radiol. 2018 Oct 30. doi:10.1097/RIR.
0000000000000528
7. Li Y, Oosting M, Deelen P, et al. Inter-individual variability and genetic influences
8. Wermuth PJ, Jimenez SA. Induction of a type I interferon signature in normal
monocytes by gadolinium-based contrast agents: comparison of linear and
effects following intravenous gadolinium administration. Invest Radiol. 2013;
10. Ca-DTPA/Zn-DTPA pentetate calcium trisodium injection pentetate zinc
trisodium injection. Available at: http://www.akorn.com/documents/penetate/
With Chelating Agents Depends on the Stability of Administered
12. Mason LH, Harp JP, Han DY. Pb neurotoxicity: neuropsychological effects of