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The role of deep learning in breast 
screening

The greatest challenge fac-
ing breast screening units is not 
that of accuracy, it is that there is 
a global radiology workforce crisis 
taking place against a backdrop of 
an exponential increase in imaging 
volume. For instance, there are 80 
Breast Screening Units in England. 
The total number of women invited 

in 2016/17 in England for Breast 
Screening rose by 3.7% to 2.96 mil-
lion. Of those, 2.2 million accepted 
the invitation and were screened, 
and 18,402 cancers were detected 
[1]. A recent UK workforce con-
sensus demonstrated that 25% of 
units have two or fewer breast radi-
ologists. Furthermore, between now 
and 2022, for every two breast radi-
ologists that join the NHS, three are 
predicted to leave [2]. However, the 
UK is not alone. Japan, for instance, 
has the lowest proportion of radi-
ologists per population in the G7, 
and it is estimated that an increase 
of staff by a factor of 2.5 is required 
in order to meet international stan-
dards [3]. Many other countries are 
also struggling to recruit and retain 
the required staff to run screening 
programmes effectively.

Currently in the EU every mam-
mogram is ‘double-read’ by two 
independent radiologists. However, 

many screening centres struggle to 
fulfil double reading requirements 
in a timely manner. Additionally, 
there is wide variation in recall 
rates between different centres. In 
the US, where screening is not invi-
tational and only single read, the 
accuracy of screening is lower, with 
significantly higher recall rates than 
double reading programmes [4]. 
Blinded double reading reportedly 
reduces false negative results and 
the average radiologist can expect 
an 8%–14% gain in sensitivity with 
double reading pairing [5]. Double-
reading has undoubtedly improved 
accuracy, but at the cost of increas-
ing human resource requirements.  

Current Solutions – Computer 
Aided Detection (CAD) Systems

After the advent of full field 
digital mammography (FFDM) at 
the turn of the millenium, medical 
imaging data became available in a 
format amenable to computational 
analysis. The huge volume of screen-
ing cases coupled with advances in 
computing (both from a hardware 
and software perspective) meant 
that attempts at automated diagno-
sis were inevitable. These early sys-
tems are known as CAD (Computer 
Aided Detection), of which iCAD 
Secondlook, and ImageChecker (by 
R2/Hologic) are the most widely 
known. As these products have been 
around for several years, there is a 
rich body of research, both positive 
and negative, into how effective they 
are, and whether they impact posi-
tively on patient outcomes [6-11]. 

The studies were conducted with 
different methodologies, sample 
sizes, population cross-sections and 
outcome metrics. While a one-to-
one comparison is difficult, a num-
ber of key trends are easy to identify. 
Firstly, there is a significant level 
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A bold vision for the future of breast cancer 
screening is required if programmes are to main-
tain double-reading standards against the back-
drop of a workforce crisis across the UK, much 
of Europe and even Japan. Traditional Computer-
Aided-Detection (CAD) for mammography decision-
support could not reach the level of an inde-
pendent reader. Our deep learning system, Mia 
(Mammography Intelligent Assistant), is on the 
cusp of providing consistent, accurate and inter-
pretable mammography reading that can slot into 
current arbitration workflows. Mia provides the 
potential for single reading programmes, such as 
in the US, to reach EU double-reading accuracy, 
as well as providing new and practical support for 
adoption of the emerging modality of digital breast 
tomosynthesis.
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of variance between the conclusions 
regarding whether the technology is 
effective. This ambiguity has meant 
a low, or even lack of CAD adoption 
in Europe, and decreasing confidence 
is also illustrated by fewer and fewer 
US hospitals utilizing it (especially 
since reimbursement incentives have 
decreased in recent years). 

CAD systems also fall outside the 
realm of blinded double-reading by 
their very positioning within the radi-
ologists’ workflow. They were designed 
to overlay Regions of Interest (ROIs) 
and present them directly to the read-
ing radiologist, in effect giving them 
more information to interpret, and 
potentially biasing their decision. The 
outputs from these CAD systems could 
not be separated from the radiologist’s 
independent review of the images as 
any final decision was made in con-
junction with the CAD outputs, rather 
than independently from them. The 
overall consensus is that these systems 
output a large number of false positive 
marks on each case, which can increase 
reading times [12]. Any of these false 
positives triggering a recall will have 
a significant impact on downstream 
healthcare costs and patient welfare. 
For example, Elmore et al [13] dem-
onstrated that for every $100 spent on 
screening with CAD, an additional $33 
was spent to evaluate unnecessary false 
positive results. More importantly, a 
significant increase in women were 
undergoing undue stress and emotional 
worry as they feared for the worst. In a 
seminal prospective UK trial (CADET 
II) [14], although CAD was shown to 
aid single reader detection of cancer, 
there was a 15% relative increase in 
recall rates between human/CAD com-
bination and standard double-reading 
by two humans.

The high proportion of false posi-
tive marks given by these early non 
deep-learning systems rendered them 
ineffective as a truly independent 
reader as they were not able to pro-
vide meaningful case-wise recall sug-
gestions, hence the only viable output 
option was providing ROI outlines. 

The flaws with traditional CADs 
stem from the underlying technol-
ogy used. Traditional machine learn-
ing techniques are often referred to as 
‘expert systems’. In this case, the breast 
radiologist is the expert who devel-
ops hand crafted features and low-
level pattern libraries in conjunction 
with an engineer, usually based on 
heuristics and pixel-distributions, that 
can correctly learn to classify objects 
in images [Figure1]. These are then 
written into code. In mammography, 
to achieve an optimal CAD tool, this 
requires a set of features capable of 
correctly detecting the diverse range 
of abnormalities that arise biologically 
in the breast. This is a demanding task, 
as microcalcifications are completely 
different in shape, texture, and size 
to masses, while the morphology of 
architectural distortions is even more 
subtle. It is intuitive and reasonable to 
assume that the standard low-level fea-
ture sets used historically would always 
be unable to capture the entirety of 
meaningful information contained in 
mammograms.

 The Promise of Deep Learning
Deep learning has already revolu-

tionised many image analysis tasks. In 
2012, the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC), 
which challenges entrants to build 
systems to correctly classify the con-
tents of an image (with 1000 possible 
classes), was won by AlexNet [16], a 

deep Convolutional Neural Network 
(CNN). It reduced error rates from (a 
then state of the art) 25.7% to 17.0%. 
This ushered in a paradigm shift for 
object recognition, with traditional 
machine learning techniques being 
universally replaced by deep learning 
(DL) based systems over the follow-
ing years. In 2017, the final year of 
the ImageNet challenge, 29 of the 38 
teams competing were able to achieve 
errors below 5.0% thanks to advances 
in deep learning (the current state of 
the art is 2.25%). This rise was facili-
tated by ever increasing amounts of 
digital data (as these CNNs require 
large numbers of images to train), and 
technological advances in graphical 
processing units (GPUs), the hard-
ware which allows these models to be 
trained quickly.

The success of these models comes 
down to their flexibility. From a radi-
ologist’s perspective, an expert prac-
titioner no longer needs to spend the 
majority of her/his time developing 
hand engineered features that capture 
specific lesion characteristics; instead 
the CNN is capable of learning the 
relevant features intuitively from large 
image datasets and their overall lesion 
labels. This flexibility comes at the cost 
of requiring larger datasets and signifi-
cant computing power. 

There has been an increase in 
research proposing the use of deep 
learning (DL) for mammography over 
the past few years, largely divided into 
two approaches: patch-based and case-
wise (whole image). 

Patch-based approaches break an 
image down into smaller regions for 
analysis, rather than taking an entire 
image as an input, as CNNs tradition-
ally were developed to accommodate 
square input image sizes between 250 
and 300 pixels in width and are not 
suitable out-of-the-box for mammog-
raphy given the large size of images. 
These systems have traditionally been 
used to aid in localisation of lesions 
within an image. However, local deci-
sion-based approaches have a num-
ber of significant problems. The most 
notable is that when the many small 
decisions are re-combined back into 
the full image the result is typically 
a large number of false positives or 

Figure 1. An example of a filter bank used in traditional CAD development. These filters cannot fully 
encompass the variety of pathologies seen in the real world. Reproduced from [15].
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overall drop of performance in line 
with the increased complexity of the 
task. 

Dhungeet et al.[17], and Ertosunet 
et al.[18] can be accredited with start-
ing off the new wave of deep learn-
ing with hybrid approaches, combin-
ing traditional machine-learning with 
deep learning. The former suggested 
a cascaded CNN-based approach fol-
lowed by a random forest and classical 
image post-processing. The latter pub-
lished a two stage deep learning system 
where the first classifies whether the 
image contains a mass, and the second 
localizes these masses. 

In 2016, the DREAM challenge 
was set up, inviting machine learn-
ing researchers to develop systems 
to detect breast cancers on a propri-
etary dataset for a monetary grand 
prize [19]. This was the first public 
competition to highlight DL’s supe-
riority in a mammography screening 
setting. The input data consisted of 
around 640,000 images of both breasts 
and, if available, previous screening 
exams of the same subject, clinical/
demographic information such as 
race, age and family history of breast 
cancer. The winning team (Therapixel, 
France) attained a specificity of 80.8% 
at a set sensitivity of 80% (AUC 0.87) 

[20] with their DL system. Ribli et 
al. came second in the challenge with 
their DL system capable of not only 
classifying malignancy, but also out-
lining the regions in an image which 
supported this decision [21].

Carneiro et al. achieved an area 
under the Receiver Operator Curve 
(ROC) of 0.9 for malignancy classifi-
cation on the publicly available DDSM 
[22] and inBreast datasets [23]. Their 
model was pre-trained on ImageNet (a 
tactic regularly employed by practitio-
ners), and yielded significant improve-
ments in mass and microcalcification 
detection. In 2017, Teare et al. [24] 
proposed a DL system that achieved 
a malignancy specificity of 80% at a 
sensitivity of 91% on DDSM, and their 
own proprietary dataset (which con-
tained an equal number of malignant 
and non-malignant cases). Geras et al. 
developed a DL system capable of clas-
sifying screening cases into BI-RADS 
0, 1, or 2 [25]. 

However the inability to identify 
malignant lesions limits its ability to 
perform as an independent reader. 
Finally, Kim et al. developed a system 
which made a malignancy prediction 
on an entire mammography case (all 4 
views) [26]. The model was trained on 
malignant (biopsy proven), and normal 

(with at least 2 years of negative fol-
low up) cases from multiple hardware 
vendors. They achieved a sensitivity of 
75.6% at a specificity of 90.2% (with an 
overall AUC of 0.903). More recently 
Rodriguez-Ruiz et al. [27] demon-
strated that a DL system (Transpara™, 
Screenpoint Medical, Nijmegen, The 
Netherlands) could increase the accu-
racy of radiologists using CAD-style 
displays of a likelihood of malignancy 
given a user-selected area.

While all of this research was con-
ducted on various different datasets, 
with a variety of different outcome 
metrics, none of the above cited works 
(including the winners of the DREAM 
challenge) reached close to the per-
formance of single human reading 
radiologists as a standalone system. 
Nevertheless, the progress over the last 
few years highlights how DL technol-
ogy is moving beyond the past perfor-
mance of traditional CAD systems, and 
closer to the goal of an independent 
reader. 

Breast density assessment is another 
area of research interest for the deep 
learning community. In the US in par-
ticular, where density assessments are 
mandated in several states, DL systems 
can provide an automated BI-RADS 
density category. Such a system has 

Figure 2. Progressive generation of synthetic mammograms from low to high pixel resolution. Reproduced from [30].
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already been implemented in clini-
cal practice at Massachusetts General 
Hospital [28]. 

Despite the data and computational 
resource requirements of DL, it has the 
potential to drive a revolution in medi-
cal image analysis, improving accuracy 
due to improved false positive and 
negative rates, increasing consistency 
and speed, automating analyses and 
speeding up assessment time. All of 
these elements provide useful practical 
support for screening programmes and 
services. The ultimate goal is to detect 
malignancies at a level that undoubt-
edly supports radiologists and breast 
units, which is at or beyond the level 
of an experienced single reader’s aver-
age performance. However, current 
available mammography datasets are 
largely unrepresentative of the range of 
true screening cases in clinical practice 
[29], so further work is required in 
order to provide developers with the 
necessary data to train and validate 
clinically applicable models.

Generative Adversarial Networks 
(GANS) are a promising type of 
machine learning that can be used 
to synthesise medical images using 
features learnt from the latent space 
of a real dataset. Our group recently 
published a pre-print describing our 
success at creating high-resolution 
mammograms using GANs [Figure 
2], [30], and postulated that there may 
be potential for synthetic data to help 
augment sparse training datasets and 
assist in domain transfer tasks.

 Independent Reading
To truly make a positive impact in 

breast cancer screening, the largest 
pain point must be addressed urgently 
- that of a radiologist workforce in cri-
sis. In order to achieve this ambitious 
goal, an automated system is needed 
that is able to make the same decision 
that a consultant radiologist makes 
when reviewing mammogram cases, 
with at least the same accuracy and 
consistency. This decision is a binary 
one - to callback a woman for further 
investigations or not - which case-wise 
deep learning systems are now able 
to achieve. We developed a DL sys-
tem, known as Mia (Mammography 
Intelligent Assessment), trained on 

over 1 million real-world screening 
mammography images gathered to 
explicitly achieve this goal, and are 
the first group to receive regulatory 
approval for a deep-learning system to 
act as a second (or third) reader that 
provides case-wise callback decisions. 
Our initial retrospective evaluation of 
this system (under consideration for 
peer reviewed publication at the time 
of writing) on an unseen validation set 
of a screening cohort of 3860 patients 
(with outcomes proven by biopsy or at 
least 3 years negative follow-up) indi-
cated that it compares favourably to 
established performance benchmarks 
for modern screening digital mam-
mography [31], the criteria for iden-
tifying radiologists with acceptable 
screening mammography interpretive 
performance [32], and the minimally 
acceptable interpretive performance 
criteria for screening mammography 
[33]. Further studies will of course be 
needed to make direct comparisons 
with radiologists in a real-world set-
ting, which is why we are working in 
partnership with the East Midlands 
Radiology Consortium (EMRAD), an 
established collaboration of seven NHS 
Acute Trusts in the East Midlands, UK, 
as well as several other NHS, EU and 
US sites to further validate Mia on a 
large cohort of screening cases.

The current European standard of 
double reading followed by arbitration, 
either via a third experienced radiolo-
gist or multi-disciplinary team, could 
be feasibly maintained by combining 
human and software decision-making 
while ensuring true blinding between 
readers. Just as there is arbitration now 
when two radiologists disagree on a 
callback decision, the same process 
could be applied when a human and 
machine disagree, and only then would 
the system’s interpretation of the case 
be queried. In this manner, radiolo-
gists would be entirely uninterrupted 
to assess cases to the best of their train-
ing and expertise, reducing any poten-
tial for bias introduced from CAD out-
puts. Furthermore, an independent DL 
reader does not provide any extra dis-
tractions, or require additional clicks 
within the radiologist’s workflow. 

Gaining radiologist’s acceptance 
that an automated independent reader 

is performing an analysis at or above 
human performance, which can be 
checked if necessary, will be an impor-
tant step that has to be a high-priority 
focus area of work in the field. Indeed, 
there are already non-radiologist staff 
taking on the role of an independent 
reader, with many sites across the UK 
training and employing consultant 
mammographers in order to bolster 
their workforce [34], as such, there is 
already a move, driven by necessity, 
towards non-radiologist interpretation 
of images.

Some may argue that effectively 
replacing one of two humans within 
a clinical setting will alter the train-
ing of breast radiologists and also 
affect their required reporting num-
bers to maintain their qualifications. 
According to Woodard et al. [35] radi-
ologists become more specific in their 
assessment of mammograms over their 
careers, but less sensitive. A system 
that performs as well as experienced 
radiologists from day one, with consis-
tency, would help mitigate against this 
recognised learning curve, and has the 
potential to help in the training of the 
future workforce, all-the-while ensur-
ing patients care is maintained, or even 
improved.

To incorporate an independent 
DL reader within double reading 
programmes would not require sig-
nificant re-organisation of how these 
programmes are run. A system that 
integrates with current reporting 
methodologies into a workflow with 
arbitration is in theory relatively sim-
ple to deploy. However, in the US, and 
other single-reading nations, double-
reading workflows are not the norm, 
and therefore the infrastructure of 
double-reading would need to be cre-
ated, enabling the benefits of European 
double reading standards to be applied 
to these single reading programmes.

Tomosynthesis
While 2-dimensional FFDM is the 

the current standard for breast can-
cer screening, increasing amounts of 
research into 3-dimensional digital 
breast tomosynthesis (DBT) are gain-
ing traction. Even though DBT has 
the potential to further increase the 
accuracy of cancer detection, it comes 

Breast Imaging
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at the cost of requiring more time to 
interpret, given the large amount of 
images produced, and a slight increase 
in radiation dose [36]. Mostly for these 
reasons, DBT has not yet seen wide-
spread adoption for population screen-
ing where there are large volumes of 
cases, and instead is mainly used for 
symptomatic or difficult cases, such as 
dense breasts [37]. In an attempt to 
mitigate against the additional time-
cost of interpreting these cases, ven-
dors offer 2D synthetic images cre-
ated from 3D tomosynthesis datasets. 
Machine learning techniques have 
been successfully applied to these syn-
thetic images, providing an increase 
in radiologist accuracy for those that 
used CAD-enhanced synthetic mam-
mograms when compared to standard 
2D FFDM alone [38].

Due to the increased number 
of image slices in DBT, the label-
ling requirements are significantly 
increased, and large enough training 
and validation DBT datasets for deep 
learning on screening populations are 
not yet available. However, machine 
learning techniques such as domain 
transfer mean that DL systems trained 
on 2D mammograms are poised to 
be applied to DBT. This is achieved 
by leveraging the useful transferable 
features from a model trained for 2D 
mammography, so that a tomosynthesis 
model does not need to be redeveloped 
completely from scratch. Nevertheless, 
as DBT and DL use increases in prac-
tice, it is inevitable that independent 
DL systems will start to be used within 
this modality also. 

Conclusion
Traditional machine learning 

approaches are sufficient to pro-
vide simple decision-support such 
as malignancy detection and den-
sity assessment, but  our deep learn-
ing system, Mia, has the potential to 
shift the paradigm from simple CAD 
clinical-decision support to being a 
truly independent reader. Mia could 
enable single reading programmes to 
achieve the low recall rates and accu-
racy of double read programmes. By 
incorporating human-level, or supe-
rior, automated mammography and 
tomosynthesis analysis into an arbi-
trated workflow, the workforce crisis 

in breast screening could be somewhat 
mitigated. Reaching this goal requires 
collaboration between data scientists 
and clinicians, with consideration 
towards the requirements of large-
scale data sharing and computational 
resource costs, as well as integration 
within current practice. 
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